Trade-off in the effects of the apolipoprotein E polymorphism on the ages at onset of CVD and cancer influences human lifespan.
Pubmed ID: 21332925
Pubmed Central ID: PMC3094490
Journal: Aging cell
Publication Date: June 1, 2011
MeSH Terms: Humans, Longevity, Adult, Cardiovascular Diseases, Alleles, Cohort Studies, Gene Frequency, Genetic Predisposition to Disease, Genotype, Kaplan-Meier Estimate, Age of Onset, Neoplasms, Lipids, Polymorphism, Genetic, Apolipoproteins E, Genetic Association Studies, Protein Isoforms
Grants: R01 AG030612, R01AG030612, R01 AG030612-04
Authors: Yashin AI, Arbeev KG, Ukraintseva SV, Akushevich I, Kulminski AM, Land KC, Arbeeva L, Culminskaya I, Wu D
Cite As: Kulminski AM, Culminskaya I, Ukraintseva SV, Arbeev KG, Arbeeva L, Wu D, Akushevich I, Land KC, Yashin AI. Trade-off in the effects of the apolipoprotein E polymorphism on the ages at onset of CVD and cancer influences human lifespan. Aging Cell 2011 Jun;10(3):533-41. Epub 2011 Apr 7.
Studies:
Abstract
Progress in unraveling the genetic origins of healthy aging is tempered, in part, by a lack of replication of effects, which is often considered a signature of false-positive findings. We convincingly demonstrate that the lack of genetic effects on an aging-related trait can be because of trade-offs in the gene action. We focus on the well-studied apolipoprotein E (APOE) e2/3/4 polymorphism and on lifespan and ages at onset of cardiovascular diseases (CVD) and cancer, using data on 3924 participants of the Framingham Heart Study Offspring cohort. Kaplan-Meier estimates show that the e4 allele carriers live shorter lives than the non-e4 allele carriers (log rank = 0.016). The adverse effect was attributed to the poor survival of the e4 homozygotes, whereas the effect of the common e3/4 genotype was insignificant. The e3/4 genotype, however, was antagonistically associated with onsets of those diseases predisposing to an earlier onset of CVD and a later onset of cancer compared to the non-e4 allele genotypes. This trade-off explains the lack of a significant effect of the e3/4 genotype on survival; adjustment for it in the Cox regression model makes the detrimental effect of the e4 allele highly significant (P = 0.002). This trade-off is likely caused by the lipid-metabolism-related (for CVD) and nonrelated (for cancer) mechanisms. An evolutionary rationale suggests that genetic trade-offs should not be an exception in studies of aging-related traits. Deeper insights into biological mechanisms mediating gene action are critical for understanding the genetic regulation of a healthy lifespan and for personalizing medical care.