Limitations of receiver operating characteristic curve on imbalanced data: Assist device mortality risk scores.

Pubmed ID: 34446286

Pubmed Central ID: PMC8800945

Journal: The Journal of thoracic and cardiovascular surgery

Publication Date: April 1, 2023

MeSH Terms: Humans, Male, Female, Risk Factors, Middle Aged, ROC Curve, Heart Failure, Retrospective Studies, Registries, Heart-Assist Devices

Grants: R01 HL122639

Authors: Movahedi F, Padman R, Antaki JF

Cite As: Movahedi F, Padman R, Antaki JF. Limitations of receiver operating characteristic curve on imbalanced data: Assist device mortality risk scores. J Thorac Cardiovasc Surg 2023 Apr;165(4):1433-1442.e2. Epub 2021 Jul 30.

Studies:

Abstract

OBJECTIVE: In the left ventricular assist device domain, the receiver operating characteristic is a commonly applied metric of performance of classifiers. However, the receiver operating characteristic can provide a distorted view of classifiers' ability to predict short-term mortality due to the overwhelmingly greater proportion of patients who survive, that is, imbalanced data. This study illustrates the ambiguity of the receiver operating characteristic in evaluating 2 classifiers of 90-day left ventricular assist device mortality and introduces the precision recall curve as a supplemental metric that is more representative of left ventricular assist device classifiers in predicting the minority class. METHODS: This study compared the receiver operating characteristic and precision recall curve for 2 classifiers for 90-day left ventricular assist device mortality, HeartMate Risk Score and Random Forest for 800 patients (test group) recorded in the Interagency Registry for Mechanically Assisted Circulatory Support who received a continuous-flow left ventricular assist device between 2006 and 2016 (mean age, 59 years; 146 female vs 654 male patients), in whom 90-day mortality rate is only 8%. RESULTS: The receiver operating characteristic indicates similar performance of Random Forest and HeartMate Risk Score classifiers with respect to area under the curve of 0.77 and Random Forest 0.63, respectively. This is in contrast to their precision recall curve with area under the curve of 0.43 versus 0.16 for Random Forest and HeartMate Risk Score, respectively. The precision recall curve for HeartMate Risk Score showed the precision rapidly decreased to only 10% with slightly increasing sensitivity. CONCLUSIONS: The receiver operating characteristic can portray an overly optimistic performance of a classifier or risk score when applied to imbalanced data. The precision recall curve provides better insight about the performance of a classifier by focusing on the minority class.