DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.

Pubmed ID: 18667698

Pubmed Central ID: PMC2491485

Journal: Proceedings of the National Academy of Sciences of the United States of America

Publication Date: Aug. 19, 2008

Affiliation: Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. lettre@broad.mit.edu

MeSH Terms: Humans, Male, Female, Cohort Studies, Adolescent, Polymorphism, Single Nucleotide, Anemia, Sickle Cell, Genotype, Repressor Proteins, Pain, Carrier Proteins, Fetal Hemoglobin, Genes, myb, Globins, Nuclear Proteins

Authors: Lettre G, Sankaran VG, Bezerra MA, Araújo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH

Cite As: Lettre G, Sankaran VG, Bezerra MA, Araújo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 2008 Aug 19;105(33):11869-74. Epub 2008 Jul 30.

Studies:

Abstract

Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. Common single nucleotide polymorphisms (SNPs) at the BCL11A and HBS1L-MYB loci have been implicated previously in HbF level variation in nonanemic European populations. We recently demonstrated an association between a BCL11A SNP and HbF levels in one SCD cohort [Uda M, et al. (2008) Proc Natl Acad Sci USA 105:1620-1625]. Here, we genotyped additional BCL11A SNPs, HBS1L-MYB SNPs, and an SNP upstream of (G)gamma-globin (HBG2; the XmnI polymorphism), in two independent SCD cohorts: the African American Cooperative Study of Sickle Cell Disease (CSSCD) and an SCD cohort from Brazil. We studied the effect of these SNPs on HbF levels and on a measure of SCD-related morbidity (pain crisis rate). We strongly replicated the association between these SNPs and HbF level variation (in the CSSCD, P values range from 0.04 to 2 x 10(-42)). Together, common SNPs at the BCL11A, HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.