Nonparametric correction for covariate measurement error in a stratified Cox model.
Pubmed ID: 14744829
Journal: Biostatistics (Oxford, England)
Publication Date: Jan. 1, 2004
MeSH Terms: Humans, Male, Adult, Case-Control Studies, Middle Aged, Coronary Disease, Proportional Hazards Models, Blood Pressure, Computer Simulation, Bias
Grants: AG14358, CA53996
Authors: Prentice RL, Gorfine M, Hsu L
Cite As: Gorfine M, Hsu L, Prentice RL. Nonparametric correction for covariate measurement error in a stratified Cox model. Biostatistics 2004 Jan;5(1):75-87.
Studies:
Abstract
Stratified Cox regression models with large number of strata and small stratum size are useful in many settings, including matched case-control family studies. In the presence of measurement error in covariates and a large number of strata, we show that extensions of existing methods fail either to reduce the bias or to correct the bias under nonsymmetric distributions of the true covariate or the error term. We propose a nonparametric correction method for the estimation of regression coefficients, and show that the estimators are asymptotically consistent for the true parameters. Small sample properties are evaluated in a simulation study. The method is illustrated with an analysis of Framingham data.