A simple algorithm to predict incident kidney disease.
Pubmed ID: 19064831
Pubmed Central ID: PMC2849985
Journal: Archives of internal medicine
Publication Date: Dec. 8, 2008
MeSH Terms: Humans, Male, Female, Algorithms, Middle Aged, Risk Assessment, Chronic Disease, Prognosis, Kidney Diseases
Grants: UL1-RR024996, T32 DK007750, T32 DK007750-09, UL1 RR024996
Authors: Kshirsagar AV, Bomback AS, August PA, Bang H, Vupputuri S, Shoham DA, Kern LM, Klemmer PJ, Mazumdar M
Cite As: Kshirsagar AV, Bang H, Bomback AS, Vupputuri S, Shoham DA, Kern LM, Klemmer PJ, Mazumdar M, August PA. A simple algorithm to predict incident kidney disease. Arch Intern Med 2008 Dec 8;168(22):2466-73.
Studies:
Abstract
BACKGROUND: Despite the growing burden of chronic kidney disease (CKD), there are no algorithms (to our knowledge) to quantify the effect of concurrent risk factors on the development of incident disease. METHODS: A combined cohort (N = 14 155) of 2 community-based studies, the Atherosclerosis Risk in Communities Study and the Cardiovascular Health Study, was formed among men and women 45 years or older with an estimated glomerular filtration rate (GFR) exceeding 60 mL/min/1.73 m(2) at baseline. The primary outcome was the development of a GFR less than 60 mL/min/1.73 m(2) during a follow-up period of up to 9 years. Three prediction algorithms derived from the development data set were evaluated in the validation data set. RESULTS: The 3 prediction algorithms were continuous and categorical best-fitting models with 10 predictors and a simplified categorical model with 8 predictors. All showed discrimination with area under the receiver operating characteristic curve in a range of 0.69 to 0.70. In the simplified model, age, anemia, female sex, hypertension, diabetes mellitus, peripheral vascular disease, and history of congestive heart failure or cardiovascular disease were associated with the development of a GFR less than 60 mL/min/1.73 m(2). A numeric score of at least 3 using the simplified algorithm captured approximately 70% of incident cases (sensitivity) and accurately predicted a 17% risk of developing CKD (positive predictive value). CONCLUSIONS: An algorithm containing commonly understood variables helps to stratify middle-aged and older individuals at high risk for future CKD. The model can be used to guide population-level prevention efforts and to initiate discussions between practitioners and patients about risk for kidney disease.