Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin.

Pubmed ID: 23048207

Pubmed Central ID: PMC3654537

Journal: Journal of medical genetics

Publication Date: Nov. 1, 2012

Affiliation: Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.

MeSH Terms: Humans, Male, Adult, Female, Aged, Aged, 80 and over, Risk Factors, Genetic Predisposition to Disease, Middle Aged, Polymorphism, Single Nucleotide, Acute Lung Injury, Genetic Association Studies, Amidohydrolases, Cell Adhesion Molecules, Muscle Proteins, Respiratory Distress Syndrome

Grants: ES00002, GM066946, HL060710, K23 HL102254, L30 HL097857, P01-HL079063, P30 ES000002, P50-HL60290, R01 HL060710, R01 GM066946, P01 HL079063

Authors: Thompson BT, Li L, Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O'Mahony DS, Sheu CC, Zhai R, Wang Z, Su L, Bajwa E, Ahasic AM, Clardy PF, Gong MN, Frank AJ, Lanken PN, Christie JD, Wurfel MM, O'Keefe GE, Christiani DC

Cite As: Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O'Mahony DS, Li L, Sheu CC, Zhai R, Wang Z, Su L, Bajwa E, Ahasic AM, Clardy PF, Gong MN, Frank AJ, Lanken PN, Thompson BT, Christie JD, Wurfel MM, O'Keefe GE, Christiani DC. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet 2012 Nov;49(11):671-80. Epub 2012 Oct 9.

Studies:

Abstract

BACKGROUND: The role of genetics in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) from direct or indirect lung injury has not been specifically investigated. The aim of this study was to identify genetic variants contributing to ALI/ARDS from pulmonary or extrapulmonary causes. METHODS: We conducted a multistage genetic association study. We first performed a large-scale genotyping (50K ITMAT-Broad_CARe Chip) in 1717 critically ill Caucasian patients with either pulmonary or extrapulmonary injury, to identify single nucleotide polymorphisms (SNPs) associated with the development of ARDS from direct or indirect insults to the lung. Identified SNPs (p≤0.0005) were validated in two separated populations (Stage II), with trauma (Population I; n=765) and pneumonia/pulmonary sepsis (Population II; n=838), as causes for ALI/ARDS. Genetic variants replicating their association with trauma related-ALI in Stage II were validated in a second trauma-associated ALI population (n=224, Stage III). RESULTS: In Stage I, non-overlapping SNPs were significantly associated with ARDS from direct/indirect lung injury, respectively. The association between rs1190286 (POPDC3) and reduced risk of ARDS from pulmonary injury was validated in Stage II (p<0.003). SNP rs324420 (FAAH) was consistently associated with increased risk of ARDS from extrapulmonary causes in two independent ALI-trauma populations (p<0.006, Stage II; p<0.05, Stage III). Meta-analysis confirmed these associations. CONCLUSIONS: Different genetic variants may influence ARDS susceptibility depending on direct versus indirect insults. Functional SNPs in POPDC3 and FAAH genes may be driving the association with direct and indirect ALI/ARDS, respectively.